
PREparing SEcuRe VEhicle-to-X
Communication Systems

Deliverable 3.1.1

FOT Trial 1 Results

Project: PRESERVE
Project Number: IST-269994
Deliverable: D3.1.1
Title: FOT Trial 1 Results
Version: 1.0
Confidentiality: Public
Editor: Renault Part of the Seventh Framework Program
Cont. Authors: J. Petit, M. Feiri, D. Broekhuis, B. Lonc,

R. Moalla, F. Kargl
Funded by the EC-DG INFSO

Date: 2013-02-18

D3.1.1 v1.0

Document History

Version Date Main author Summary of changes
v0.1 2013-01-07 B. Lonc, R. Moalla

(Renault)
Initial structure of document created

v0.2 2013-01-18 J. Petit (UT) Inputs for FOT 1
v0.3 2013-02-10 D. Broekhuis (UT) Figures, Setup
v0.4 2013-02-14 M. Sall (Trialog) Input for Assessment
v1.0 2013-02-15 B. Lonc (Renault),

R. Moalla (Re-
nault), M.Feiri
(UT), F. Kargl (UT)

Finalization of the document

Table 1: PIM methods

Approval
Name Date

Prepared B. Lonc 2013-02-15
Reviewed All Project Partners 2013-02-18
Authorized Frank Kargl 2013-02-18

Circulation
Recipient Date of submission
Project Partners 2013-02-18
European Commission 2013-02-18

2013-02-18 IST-269994 i

Contents D3.1.1 v1.0

Contents

Glossary v

1 Introduction 1

2 Assessment plan of VSS Kit 1 3
2.1 Test bench for validation . 3
2.2 Test of the VSS implementation . 4

2.2.1 Test of the basic functionalities of the VSS 4
2.2.2 test of the functionalities offered to the FOTs 9

2.3 Test results . 16

3 PRESERVE Initial Validation Tests Setup 17
3.1 Internal FOT 1 Setup . 17
3.2 Test cases . 19

3.2.1 Test1: x86 . 19
3.2.2 Test2: Denso WSU . 19
3.2.3 Test3: Cohda Wireless MK3 . 20
3.2.4 Test4: FPGA . 20
3.2.5 All tests . 20

4 Performance evaluation results of the Internal FOT 1 21
4.1 Test1: x86 . 21
4.2 Test2: Denso Box . 22
4.3 Test3: Cohda Wireless MK3 . 23
4.4 Test4: FPGA . 24
4.5 Discussion . 25

5 Conclusion 26

2013-02-18 IST-269994 ii

List of Figures D3.1.1 v1.0

List of Figures

2.1 The Denso and Cohda modems . 4

3.1 The Denso and Cohda modems . 18
3.2 The FPGA . 18

2013-02-18 IST-269994 iii

List of Tables D3.1.1 v1.0

List of Tables

1 PIM methods . i

4.1 x86 results (size optimized) . 21
4.2 x86 results (speed optimized) . 22
4.3 Denso WSU results (size optimized) . 22
4.4 Denso WSU results (speed optimized) . 23
4.5 Cohda Wireless MK3 results (size optimized) 23
4.6 Cohda Wireless MK3 results (speed optimized) 24
4.7 FPGA results . 24

2013-02-18 IST-269994 iv

Glossary D3.1.1 v1.0

Glossary

Abbrev Synonyms Description Details

API Application Programming
Interface

An API is a particular set of spec-
ifications that software programs
can follow to communicate with
each other.

ASIC Application-Specific
Integrated Circuit

As its name suggests an ASIC is
an integradted circuit specifically
customized for a particular func-
tion

CL Convergence Layer

Module that connects the exter-
nal on-board entities (e.g. com-
munication stack or applications)
to the PRESERVE Vehicle Secu-
rity Subsystem (VSS)

CRS Cryptographic Services

Module acting as proxy for ac-
cessing different cryptographic al-
gorithm implementations. Origi-
nates from the EVITA project

EAM Entity Authentication
Module

Module responsible for ensuring
entity authentication of in-vehicle
components. Originates from the
EVITA project

FPGA Field-Programmable
Gate Array

A FPGA is an integrated circuit
that can be reprogrammed by the
customer after manufacturing

HSM Hardware Security
Module

IDE Integrated development
environment

An IDE is a software application
that provides comprehensive fa-
cilities to computer programmers
for software development

IDM ID and Trust
Management Module

Module responsible for ID man-
agement originating from SeVe-
Com project.

OEM Original Equipment
Manufacturer

Refers to an generic car manufac-
turer

2013-02-18 IST-269994 v

Glossary D3.1.1 v1.0

Abbrev Synonyms Description Details

PAP Policy Administration
Point

Module related to the PDM origi-
nating from EVITA project

PC Short Term
Certificate

Pseudonym Certificate

A short term certificate authenti-
cates stations in G5A communi-
cation and contains data reduced
to a minimum.

PCA Pseudonym Certificate
Authority

Certificate authority entity in the
PKI that issues pseudonym cer-
tificates

PDM Policy Decision Module
Module responsible for enforc-
ing the use of policies originating
from EVITA project

PDP Policy Decision Point
Module related to the Policy De-
cision Module originating from
EVITA project

PeRA Privacy-enforcing
Runtime Architecture

Module responsible for enforcing
privacy protection policies origi-
nating from PRECIOSA project

PEP Policy Enforcement Point
Module related to the Policy De-
cision Module originating from
EVITA project

PIM Platform Integrity Module
Module responsible for ensur-
ing in-vehicle component integrity
originating from EVITA project

PKI Public Key Infrastructure

A PKI is a set of hardware, soft-
ware, policies, and procedures
needed to create, manage, dis-
tribute, use, store, and revoke dig-
ital certificates.

PMM Pseudonym Management
Module

Module responsible for manage-
ment of the station’s pseudonym
certificates originating from
SEVECOM project

SCM Secure Communication
Module

A generic name for the complete
secure communication stack

SEP Security Event Processor

Module responsible for security
event management (e.g. check-
ing message plausibility, station
reputation calculation)

VSS V2X Security Subsystem

Close-to-market implementation
of the PRESERVE VSA that is
the outcome of PRESERVE work
package 2

WSU Wireless Safety Unit

2013-02-18 IST-269994 vi

Glossary D3.1.1 v1.0

2013-02-18 IST-269994 vii

1 Introduction D3.1.1 v1.0

1 Introduction

This deliverable D3.1.1 intends to summarize the evaluation of measurements performed
on PRESERVE FPGA-based V2X Security Subsystem (VSS) through two distinct field-
testing activities of the V2X security system:

1. An internal FPGA-based VSS test done at University of Twente, called Internal FOT
Trial 1 (IFT1).

2. A joint trial with the Score@F French FoT project (JFT), using the VSS integrated
into the OBUs and RSUs platforms developed by Score@F.

Note: The joint tests with Score@F are currently not covered in this initial draft deliverable
(D3.1.1) but will be covered in a second version (D3.1.2). This is due to Score@F project
delays and priorities given by Score@F partners to user experimentations on natural/open
roads environment in Versailles/Yvelines area. Consequently, the time schedule for testing
security and safety applications on SATORY tracks is constantly changing and pushed
towards the end of Score@F project (planned for 2013-Q2 or Q3).

Section 2 presents the assessment plan for PRESERVE VSS implementation based on
the FESTA test methodology. This section details the steps of the test methodology, the
use cases and research questions (regarding the challenges of PRESERVE solutions for
security and privacy-protected V2X communications), and the performance indicators and
measurement procedures used to evaluate PRESERVE VSS implementation. Section 2
integrates the specification of a list of test cases that can be used in various trials during
the project duration. It was initially prepared as an Technical Report 4 “Testing Handbook”
for dissemination to other projects (e.g. FOTNET, Drive C2X).

Section 3 presents the two initial PRESERVE trials: the internal and the joint test. For
both, the test environment and set-up, the test purpose and main functions and opera-
tional requirements which are being tested during the concerned field-testing activities is
presented. D3.1.1 focuses on the internal trial activities only (based on VSS Kit 1).

Section 4 presents the evaluation results of the internal field-test at UT. This deliverable
D3.1.1 includes preliminary conclusions, based on first measurements evaluation from the
Internal FOT Trial 1 (IFT1).

The tests presented in this first version (D3.1.1) primarily serve to validate the correct
functionality of PRESERVE VSS Kit 1 and to provide initial performance measurements.
The latter are primarily aimed at demonstrating the insufficiency of pure software-based
solutions. While we also benchmark the FPGA-based solution, it is important to note that
the FPGA has the primary purpose to validate the later ASIC design and to allow early in-
tegration of hardware. It also proved useful in discovering problems with USB connectivity

2013-02-18 IST-269994 1

1 Introduction D3.1.1 v1.0

that is currently still enhanced and tuned. The FPGA is therefore not optimized for speed
and cannot serve as an indication of later ASIC speed.

2013-02-18 IST-269994 2

2 Assessment plan of VSS Kit 1 D3.1.1 v1.0

2 Assessment plan of VSS Kit 1

This section presents the assessment plan of VSS Kit 1 (HSM SW version and FPGA-
based HSM). It describes the test bench and test environment used for the assessment of
VSS Kit 1 and especially presents a logging facilities developed for such testing. Secondly
the specification of test cases used to validate VSS Kit 1 is given and the test results of
assessment is presented in section 2.3.

2.1 Test bench for validation

The validation tests of VSS functionalities were performed using VSS Kit 1, version 1.3.1.
The figure 2.1 presents the configuration of the test bench.

In order to be able to evaluate the performance of our VSS implementation, the class Log-
MemoryAndTimeStats has been implemented. With the help of other internal classes,
it offers to the caller the possibility to know the time consumed by a function. For conve-
nience’ sake, some macros have been defined. Thus, for knowing the time consumed by
a method, the implementer has just to add CHECKPOINT(label) at the beginning of his
method where label is any text that identifies the checkpoint. When this method is entered,
the current time is registered (with the label). When the control leaves the method, the
corresponding time is automatically registered (again with the label). All the checkpoints
are stored in one or several records that can be analyzed afterwards. The implementer
can also used the mechanism described above for storing special events like the result of
a function (e.g. the result of the verification of a signature). The memory consumption can
also be traced by the class LogMemoryAndTimeStats.

This mechanism can be activated or deactivated in the configuration file of the VSS (at-
tribute logging_with_statistics). All the logging data are periodically stored in one file.
But in case of platform with a limited disk space, a special mechanism has been imple-
mented. This mechanism is triggered by the parameter logging.report.circular When it
is present, a new file is created each time logging data must be stored. This file is suffixed
by an counter. The value of the parameter indicates the maximum number of files that can
be created. When this number of files is reached, the counter is set to 1. For example, if
the value of the parameter is 20, the files logging.1 up to logging.20 are created. And the
file logging.1 is created again (replacing the file with the same name) and so on.

It has been used for measuring the time consumed for signing a message and for verifying
the signature of a message. Some results on different platforms can be found in the next
sections.

2013-02-18 IST-269994 3

2.2 Test of the VSS implementation D3.1.1 v1.0

Figure 2.1: The Denso and Cohda modems

2.2 Test of the VSS implementation

In this section we describe the different tests that verify that all the functionalities imple-
mented in the VSS are working as expected. This description is divided in two parts.
The first part concerns the test of the underlying functions that support the functionalities
visible to the FOTs. The second part tests the functionalities required by the FOTs.

A big part of the behaviour of the VSS can be configured in the configuration file which
name is pcom.cfg. In particular, the directory where the certificates are stored, the direc-
tory where the cryptographic keys are stored for the software version of the HSM.

2.2.1 Test of the basic functionalities of the VSS

Prior to be able to offer services to the FOTs, the VSS must have a bunch of certificates
(at least one long term certificate and one or more pseudonyms). The first step is then to
test that the VSS is able to obtained certificates from a PKI.

2013-02-18 IST-269994 4

2.2 Test of the VSS implementation D3.1.1 v1.0

• The communication with the PKI in order to obtain new certificates. In Preserve we
have two PKIs, so, we passed the tests with the two PKIs.

• The request of a long term certificate from both PKIs.

• The request of n pseudonyms from both PKIs.

• The request of n pseudonyms for the one PKI with the use of the long term certificate
obtained from the other PKI. The objective here is to test the interoperability of the
two PKIs.

These high level functionalities use a great number of underlying functions which have
been tested individually. Among these functions are the following ones:

• The creation and the management of 1609.2 messages

• The serialization and the deserialization of 1609.2 messages

• The creation of symmetric cryptographic key

• The creation of private/public cryptographic key pair

• The import of a remote cryptographic key

• The export of a public cryptographic key

• The signing of a bloc of data,

• The verification of a signature associated to a bloc of data

• The cipher of a bloc of data

• The deciphering of data

2.2.1.1 Test_LTCREQ_VB_01

Purpose: Verify that a long term certificate request can be issued and the response was
treated correctly

Precondition: A LTCA must be reachable

Context: The software version of the HSM is used

The PKI of Fraunhofer is used

Procedure Remarks
Preamble:

Remove all the keys from the HSM

This is not mandatory. It is
just for being sure that there
is enough space in the HSM
for creating new keys

2013-02-18 IST-269994 5

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
Body:
Creation of the long term certificate request

Ciphering of the request
The request is ciphered with
the IDK and the public key of
the LTCA

The request is sent to the LTCA
The response from the LTCA is received
The response is deciphering
The LTC is extracted
It’s signature is verified

The LTC is stored

Verify that the LTC has
been effectively stored in
the repository together with
the corresponding .meta
that contains the HSM key
handles created for the LTC

Postamble:
Verify that the HSM keys as-
sociated to the LTC are still
there

2.2.1.2 Test_LTCREQ_VB_02

Purpose: Same purpose as above but the PKI of Escrypt

2.2.1.3 Test_LTCREQ_VB_03

Purpose: Same purpose as above but with the FPGA

2.2.1.4 Test_PSNYMREQ_VB_01

Purpose: Verify that a pseudonym certificate request can be issued and the response
was treated correctly

Preconditions: A PCA must be reachable

A long term certificate must exist and must be valid. It must be stored in the directory
specified in the configuration file

The HSM keys associated to the long term certificate must exist. They are in the directory
specified in the configuration file

Context: The software version of the HSM is used

The PKI of Fraunhofer is used

2013-02-18 IST-269994 6

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
Preamble:
Body:
Creation of the pseudonym certificate request

Ciphering of the request

The request is signed with
the LTC and ciphered with the
IDK and the public key of the
PCA

The request is sent to the PCA
The response from the PCA is received
The response is deciphering
The pseudonyms are extracted
Their signature is verified
The pseudonyms are stored
Postamble:

Verify that the pseudonyms
have been effectively stored
in the repository together
with their corresponding
.meta that contains the HSM
key handles created for the
different pseudonyms
Verify that the HSM keys as-
sociated to the pseudonyms
are still there

2.2.1.5 Test_PSNYMREQ_VB_02

Purpose: Same purpose as above but with the PKI of Escrypt

2.2.1.6 Test_PSNYMREQ_VB_03

Purpose: Same purpose as above but with the PCA of Escrypt and the LTC obtained
from the LTCA of Fraunhofer

2.2.1.7 Test_PSNYMREQ_VB_04

Purpose: Same purpose as above but with the PCA of Fraunhofer and the LTC obtained
from the LTCA of Escrypt

2013-02-18 IST-269994 7

2.2 Test of the VSS implementation D3.1.1 v1.0

2.2.1.8 Test_PSNYMREQ_VB_05

Purpose: Verify that a pseudonym certificate request can be issued and the response
was treated correctly with the FPGA

Precondition: A PCA must be reachable

A long term certificate must exist and must be valid. It must be stored in the directory
specified in the configuration file

The HSM keys associated to the long term certificate must exist. Either pre-defined keys
are used or the FPGA has not been reloaded between the long term certificate request
and the pseudonym request.

Context: The FPGA is used

The PKI of Fraunhofer is used

Procedure Remarks
Preamble:
Body:

Creation of the pseudonym certificate request

The predefined keys of the
FPGA must be used. The
range of these keys is spec-
ified in the configuration file

Ciphering of the request

The request is signed with
the LTC and ciphered with the
IDK and the public key of the
PCA

The request is sent to the PCA
The response from the PCA is received
The response is deciphering
The pseudonyms are extracted
Their signature is verified
The pseudonyms are stored
Postamble:

Verify that the pseudonyms
have been effectively stored
in the repository together
with their corresponding
.meta that contains the HSM
key handles created for the
different pseudonyms

2013-02-18 IST-269994 8

2.2 Test of the VSS implementation D3.1.1 v1.0

2.2.2 test of the functionalities offered to the FOTs

In order to test our VSS implementation we first list all the functionalities needed by the
FOTs. For each functionality we specified some test scenario (as done in the previous
section).

Having test the basic functionalities, we test the following ones:

• The creation for the signature of a message that is to be sent by the vehicle

• The verification of the signature of a message received by the vehicle

• The change of pseudonym when the VSS implementation finds that the current
pseudonym has been used to many times or for a too long time. This depends
on the configuration parameters.

• The last functionality that has been tested is Verification on demand which has
been recently added to the VSS in response to a demand of a FOT. This functionality
has been requested to overcome the poor performance of the current implementa-
tion of the FPGA.

2.2.2.1 Test_Sign_Verify_VB_01

Purpose: Verify that the VSS is able to sign a message and to verify the signature of an
incoming message

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

Context: The software version of the HSM is used. No customer function has been
registered so that pseudonym change is not possible.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
No customer function has been registered.
Body:

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

2013-02-18 IST-269994 9

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
Postamble:

As the two functions are
called 200 times, we just ver-
ify that we have 200 success
in the log file with the tools
wc. We also verify that no
pseudonym change has oc-
curred.

2.2.2.2 Test_Sign_Verify_VB_02

Purpose: Verify that the VSS is able to sign a message and to verify the signature of an
incoming message

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file

Context: The software version of the HSM is used. Pseudonym change is possible.

The request for more pseudonyms has been deactivated in the configuration file.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
A customer function has been registered
The attribute pm.dont_ask_new_pseudonyms
must be present in the configuration file and set to 1
Body:

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

Postamble:

2013-02-18 IST-269994 10

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
As the two functions are
called 200 times, we just ver-
ify that we have 200 success
in the log file with the tools
wc. At least one pseudonyms
changed has been done. In
this case, verify that at least
one pseudonym has been re-
moved from the repository. In
fact, during the 200 invoca-
tions, 3 different pseudonyms
were used.

2.2.2.3 Test_Sign_Verify_VB_03

Purpose: Verify that when the number of available pseudonyms is under a specified
number, a pseudonym request is sent to a PCA

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file

A PCA must be reachable

Context: The software version of the HSM is used. Pseudonym change is possible.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
A customer function has been registered.
The attribute pm.dont_ask_new_pseudonyms of
the configuration file must be set to 0
Body:

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

2013-02-18 IST-269994 11

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
Postamble:

As the two functions are
called 200 times, we just ver-
ify that we have 200 success
in the log file with the tools
wc. At least one pseudonyms
changed has been done. In
this case, verify that at least
one pseudonym has been
removed from the repository.
We must see that a
pseudonym request has
been sent to a PCA
The new pseudonyms must
have been stored in the
repository

2.2.2.4 Test_Sign_Verify_VB_04

Purpose: Verify that the functionality blockPseudonymChange is operational.

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file

A PCA must be reachable

Context: The software version of the HSM is used. Pseudonym change is possible.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
A customer function has been registered.
The attribute pm.dont_ask_new_pseudonyms of
the configuration file must be set to 0
Body:
the function blockPseudonymChange is called with a
duration greater than the time of the test

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

2013-02-18 IST-269994 12

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

Postamble:
As the two functions are
called 200 times, we just ver-
ify that we have 200 success
in the log file with the tools wc
Verify that no pseudonym
changed has occurred

2.2.2.5 Test_Sign_Verify_VB_05

Purpose: Verify that the functionality blockPseudonymChange is operational.

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file

A PCA must be reachable

Context: The software version of the HSM is used. Pseudonym change is possible.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
A customer function has been registered.
The attribute pm.dont_ask_new_pseudonyms of
the configuration file must be set to 0
Body:
the function blockPseudonymChange is called with a
duration smaller than the time of the test

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

Postamble:

2013-02-18 IST-269994 13

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
As the two functions are
called 200 times, we just ver-
ify that we have 200 success
in the log file with the tools
wc
Verify that at least one
pseudonym changed has
occurred

2.2.2.6 Test_Sign_Verify_VB_06

Purpose: Verify that the functionality freePseudonymChange is operational.

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file

A PCA must be reachable

Context: The software version of the HSM is used. Pseudonym change is possible.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
A customer function has been registered.
The attribute pm.dont_ask_new_pseudonyms of
the configuration file must be set to 0
Body:
the function blockPseudonymChange is called with a
duration greater than the time of the test

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

the function freePseudonymChange before the end
of the test
Postamble:

2013-02-18 IST-269994 14

2.2 Test of the VSS implementation D3.1.1 v1.0

Procedure Remarks
As the two functions are
called 200 times, we just ver-
ify that we have 200 success
in the log file with the tools
wc
Verify that at least one
pseudonym changed has
occurred

2.2.2.7 Test_Verification_On_Demand_VB_01

Purpose: Verify that the verification does not occur at each call

Preconditions: Pseudonyms must exist and must be valid. They must be stored in the
directory specified in the configuration file

The HSM keys associated to these pseudonyms must exist. They must be stored in the
directory specified in the configuration file or in the default directory if not specified in the
configuration file

Context: The software version of the HSM is used.

The test calls the functions sign/verify 200 times. At each invocation, the size of the buffer
to sign is incremented by one (= a simple solution for having different buffers).

Procedure Remarks
Preamble:
The attribute pm.policy.verificationpolicy
has the value sampling and the attribute
pm.policy.verificationvalue is set to a thresh-
old
Body:

Creation of the signature of a bloc of data
Verify that the result of the op-
eration is success

Verification of the signature created at the previous
step

Verify that the result of the op-
eration is success

Postamble:

At the end of the test, the
number of verifications is co-
herent with the value speci-
fied in the configuration file

All the above tests are relevant for use cases F-SIG-01, F-SIG-02, F-SIG-03, F-CER-01,
F-PSN-02 of PRESERVE testing handbook.

2013-02-18 IST-269994 15

2.3 Test results D3.1.1 v1.0

2.3 Test results

All the tests described above have been successfully passed on an x86 platform for the
software version of the HSM and for the FPGA.

Below we indicate the status of the higher level functionalities offered to customers by
VSS (see deliverable D2.1). Test results are summarized in the following table:

Functionality Status

blockPseudonymChange not yet requested by FOTs
but successfully tested

freePseudonymChange not yet requested by FOTs
but successfully tested

changePseudonym

not tested. In fact the
action of provoking the
changing of pseudonym
by a customer has not
been tested. But the test
Test_Sign_Verify_VB_02
shows that the changing of
pseudonyms works

createSignature successfully tested
verifySignature successfully tested

encryptSendingFrame

not yet requested by FOTs so
not tested. But the low-level
method that ciphers data is
working as it has been suc-
cessfully tested by the tests
on certificate requests

decryptReceivedFrame
not yet requested by FOTs so
not tested. Same remark as
above

registerRequestNetworkIdChange successfully tested
indicateNetworkIdChange successfully tested

2013-02-18 IST-269994 16

3 PRESERVE Initial Validation Tests Setup D3.1.1 v1.0

3 PRESERVE Initial Validation Tests Setup

This section presents the initial tests used for PRESERVE trials: the test environment
and set-up, the test purpose and main functions and operational requirements which are
being tested during the concerned field-testing activities. D3.1.1 focuses on the internal
trial activities only (based on VSS Kit 1). D3.1.2 will then also detail results of joint tests
with Score@F.

3.1 Internal FOT 1 Setup

The first field operational test (FOT) is an internal test of the first (FPGA-based) VSS Kit.
Its aim is to perform testing to verify overall functionality and to benchmark timings in less-
loaded environments.
A typical VSS Kit setup consists of modems, and connected to each of these is an FPGA.
The modems have antennas to communicate with each other. The FPGA acts as a hard-
ware accelerator for cryptographic operations, such as signing and verifying messages.
Thus a setup such as this allows a modem to for example send a message to the con-
nected FPGA, which will generate a signature on this message. The modem then uses
the radio connection to send this signature to another modem, which then uses its FPGA
to verify the received signature. Before this entire setup can be tested even in a low-load
environment, the individual components need to be tested for functionality and bench-
marked to give some indication of performance.

To achieve this goal, a number of tests were performed. For these tests the following
hardware was available:

• Denso WSU-01 (B)

• Cohda Wireless MK3

• Asus Eee PC netbook

• ZTEX USB FPGA Module 1.15 with Power Supply Module 1.1

The Denso WSU and the Cohda Wireless MK3 are both modems, and can be seen in
figure 3.1. The FPGA can be seen in figure 3.2.

The Denso WSU uses a PowerPC based processor, and the Cohda MK3 uses an Arm
based processor. Because of this, a cross-compilation toolchain is necessary to build ap-
plications for these systems. Furthermore, the FPGA connects to the modems through

2013-02-18 IST-269994 17

3.1 Internal FOT 1 Setup D3.1.1 v1.0

Figure 3.1: The Denso and Cohda modems

Figure 3.2: The FPGA

2013-02-18 IST-269994 18

3.2 Test cases D3.1.1 v1.0

USB, which means that we need some library on the modems that gives them the func-
tionality to connect and use USB devices. As a cross-platform library was needed, libusb
was used as the USB library.
Lastly, the modems also have an ethernet connection, which means that they can be put
online and accessed remotely. For security, standard services such as telnet and ftp are
disabled, allowing SSH access only from authorized users.

3.2 Test cases

To test the performance of the modems and the FPGA, a benchmarking application was
created. The benchmarks are based on the performance of signing messages and verify-
ing these signatures. The benchmarking process works as follows: A message is signed
and then verified, and the time taken for each of these two steps is calculated. This
is repeated a number of times to give the average time taken for generating signatures
and verifying signatures respectively. From this the average number of signature gener-
ations/verifications per second is calculated. Additionally, for each message it is checked
whether or not the signing and verifying were successful. This way both the functionality
and the timings can be evaluated.

To compare the performance, the same benchmark application is run on the different com-
ponents. To give an indication of the effects of including an FPGA in the setup, software
only benchmarks will also be performed alongside a hardware (FPGA) test. The software
only benchmarks will be done on the two modems as well as on the Asus netbook. Finally
benchmarking will be done using one of the modems or the laptop as a host, and the
FPGA as a hardware accelerator.

All of the above leads to the following four test cases:

3.2.1 Test1: x86

For the x86 test an Asus Eee PC with a 1.6GHz Intel Atom N270 processor was used.
The benchmark application was built using GCC 4.4.3.

3.2.2 Test2: Denso WSU

The next tests and benchmarks were performed on a Denso Box, which contains a 400MHz
MPC5200B PowerPC processor. The benchmark was compiled using GCC 3.3.2.

2013-02-18 IST-269994 19

3.2 Test cases D3.1.1 v1.0

3.2.3 Test3: Cohda Wireless MK3

The final VSS Kit software only tests were performed on a Cohda Wireless MK3 which has
a 533MHz ARM11 processor. The benchmark application was built using GCC 4.1.2.

3.2.4 Test4: FPGA

The processing performance of the FPGA should not be dependent on the host that it is
connected to, as all processing is done on the FPGA itself and the host is only used for
sending and receiving packets from the FPGA. Thus we only need to run the benchmarks
from a single host to get performance benchmarks for the FPGA. In this case the Asus
Eee PC is used as a host and connected to the FPGA with a USB cable. The signing and
verification of messages is performed on the FPGA itself.

3.2.5 All tests

For all tests, the benchmarking application was built against VSS kit 1.4.0 (svn release
r2883) and the FPGA ran firmware version 1.5. It was also of interest how different com-
piler flags affect the benchmarking performance. For this reason, all test are performed
twice, first with the application compiled with the -Os flag which optimizes for size, and
second with the -O3 flag, which optimizes for speed.

All the above tests are relevant for use cases F-SIG-01, F-SIG-02 and F-SIG-03 of the
Preserve testing handbook.

2013-02-18 IST-269994 20

4 Performance evaluation results of the Internal FOT 1 D3.1.1 v1.0

4 Performance evaluation results of the
Internal FOT 1

In this section the results of the four test cases are presented and described. For each test
a table with 10 different test runs is given. For each test run the time to sign a message, the
time to verify a signature, as well as whether or not the sign/verify process was successful
is given. These data lead to the average time of signature generations/verifications, and
from this how many signature generations/verifications can be performed on average per
second.

4.1 Test1: x86

The results of the size optimized test can be seen in table 4.1 and the results of speed
optimized test can be seen in table 4.2.

We can see that for the size optimized test it takes on average 16.5 and 93.5 millisec-
onds respectively to sign and verify messages. This leads to on average 60.6 signature
generations per seconds and 10.7 signature verifications per second.

For the speed optimized test, the netbook can perform on average 69.4 signatures per
second and 12 verifications per second. This is an improvement of roughly 14.5% and

Test # Sign Duration (ms) Verify Duration (ms) Success
1 20 94 yes
2 15 94 yes
3 16 93 yes
4 16 93 yes
5 18 94 yes
6 16 93 yes
7 16 93 yes
8 16 93 yes
9 15 95 yes

10 17 93 yes
average 16.5 93.5 -

average verification per second 60.6 10.7 -

Table 4.1: x86 results (size optimized)

2013-02-18 IST-269994 21

4.2 Test2: Denso Box D3.1.1 v1.0

Test # Sign Duration (ms) Verify Duration (ms) Success
1 19 83 yes
2 14 83 yes
3 13 85 yes
4 14 83 yes
5 14 83 yes
6 14 82 yes
7 14 83 yes
8 14 83 yes
9 14 84 yes

10 14 83 yes
average 14.4 83.2 -

average verification per second 69.4 12.0 -

Table 4.2: x86 results (speed optimized)

Test # Sign Duration (ms) Verify Duration (ms) Success
1 107 458 yes
2 76 452 yes
3 74 456 yes
4 78 457 yes
5 77 457 yes
6 77 455 yes
7 74 460 yes
8 76 457 yes
9 77 451 yes

10 75 454 yes
average 79.1 455.7 -

average verification per second 12.6 2.19 -

Table 4.3: Denso WSU results (size optimized)

12.1 for signature generations and verifications respectively. For both tests we can see
that all the tests complete successfully, so the signing and verifying works as it should.

4.2 Test2: Denso Box

The results of the size optimized test can be seen in table 4.3 and the results of speed
optimized test can be seen in table 4.4.

The size optimized benchmarks give verification and generations rates of 12.6 and 2.19
messages per second respectively. For the speed optimized benchmarks there is an im-
provement to 15.2 generations and 2.66 verifications per second. In this case, optimizing

2013-02-18 IST-269994 22

4.3 Test3: Cohda Wireless MK3 D3.1.1 v1.0

Test # Sign Duration (ms) Verify Duration (ms) Success
1 90 378 yes
2 66 375 yes
3 63 375 yes
4 64 377 yes
5 62 372 yes
6 62 372 yes
7 64 377 yes
8 63 373 yes
9 61 377 yes

10 63 377 yes
average 65.8 375.3 -

average verification per second 15.2 2.66 -

Table 4.4: Denso WSU results (speed optimized)

Test # Sign Duration (ms) Verify Duration (ms) Success
1 144 685 yes
2 115 682 yes
3 116 678 yes
4 150 677 yes
5 118 680 yes
6 117 678 yes
7 122 675 yes
8 115 678 yes
9 112 677 yes

10 114 711 yes
average 122.3 682.1 -

average verification per second 8.18 1.47 -

Table 4.5: Cohda Wireless MK3 results (size optimized)

for speed gives a 20.6% and 21.5% improvement in signature generation time and verifi-
cation time respectively.

4.3 Test3: Cohda Wireless MK3

The results of the size optimized test can be seen in table 4.5 and the results of speed
optimized test can be seen in table 4.6.

The Cohda wireless seems to give the slowest software performance, with on average
8.18 generations and 1.47 verifications per second. Again optimizing for speed shows
some gain in performance, giving 9.28 generations and 1.62 verifications per second.

2013-02-18 IST-269994 23

4.4 Test4: FPGA D3.1.1 v1.0

Test # Sign Duration (ms) Verify Duration (ms) Success
1 130 620 yes
2 101 613 yes
3 103 614 yes
4 107 605 yes
5 104 647 yes
6 106 616 yes
7 105 619 yes
8 108 608 yes
9 107 623 yes

10 107 603 yes
average 107.8 616.8 -

average verification per second 9.28 1.62 -

Table 4.6: Cohda Wireless MK3 results (speed optimized)

Test # Sign Duration (ms) Verify Duration (ms) Success
1 86 75 yes
2 86 76 yes
3 87 75 yes
4 89 75 yes
5 89 75 yes
6 90 75 yes
7 89 77 yes
8 90 76 yes
9 89 79 yes

10 90 75 yes
average 88.5 75.8 -

average verification per second 11.3 13.2 -

Table 4.7: FPGA results

This is an improvement of 13.4% for signature generations and 10.2% for signature verifi-
cations.

4.4 Test4: FPGA

The result of the hardware tests can be seen in table 4.7.

Here we see that the FPGA can perform circa 11.3 signature generations per second and
13.2 signature verifications per second. It is important to note that these benchmarks
include all USB latencies. This means that the total time to sign or verify a message
consists of sending packets over the USB connection to the FPGA, the FPGA processing

2013-02-18 IST-269994 24

4.5 Discussion D3.1.1 v1.0

the message, and then the FPGA sending back the result over the USB connection. In
terms of functionality the FPGA works as expected, successfully completing all tests.

4.5 Discussion

From the benchmark results, it is clear that the modems are very slow at verifying signa-
tures in software, and including the FPGA as a cryptographic accelerator certainly pro-
vides improvements in this area. In terms of generating signatures, the software and
FPGA performance does not seem to be very different. Compared to the x86 bench-
marks, generating signatures seems to be much faster on the netbook, whereas verifying
signatures is slightly slower. Overall it is seen that in software tests, around 10-20% im-
provement can be found in compiling with a flag so that the application is optimized for
speed, though this may go at the cost of requiring more storage/memory.

2013-02-18 IST-269994 25

5 Conclusion D3.1.1 v1.0

5 Conclusion

As a result of our initial tests we have validated the correct functionality of the PRESERVE
VSS Kit 1 including the FPGA-based HSM. During these tests, initial problems, e.g., with
USB connectivity of the HSM were identified and removed. Tests were conducted in two
environments, one in a lab environment at University of Twente and the second during
integration of the PRESERVE VSS Kit 1 into Score@F cars. In the first, we also conducted
preliminary performance measurements.

As a result of these tests, we have an increased confidence in the correctness of the PRE-
SERVE VSS software and especially the FPGA Hardware Security Module that is now the
basis for the design of the ASIC. Next steps now include practical FOT tests with Score@F
in Q2 or Q3 2013 that will further allow to enhance the reliability of the PRESERVE VSS
Kit 1 and then internal and joint tests with PRESERVE VSS Kit 2 including the ASIC. Due
to significant changes in ASIC design (55 nm production process instead of originally en-
visioned 90 respectively 180 nm), ASICs will likely not become available before the end of
the year, so these tests will likely be conducted in 2014.

2013-02-18 IST-269994 26

	Preface
	Contents
	List of Figures
	List of Tables

	Glossary
	1 Introduction
	2 Assessment plan of VSS Kit 1
	2.1 Test bench for validation
	2.2 Test of the VSS implementation
	2.2.1 Test of the basic functionalities of the VSS
	2.2.2 test of the functionalities offered to the FOTs

	2.3 Test results

	3 PRESERVE Initial Validation Tests Setup
	3.1 Internal FOT 1 Setup
	3.2 Test cases
	3.2.1 Test1: x86
	3.2.2 Test2: Denso WSU
	3.2.3 Test3: Cohda Wireless MK3
	3.2.4 Test4: FPGA
	3.2.5 All tests

	4 Performance evaluation results of the Internal FOT 1
	4.1 Test1: x86
	4.2 Test2: Denso Box
	4.3 Test3: Cohda Wireless MK3
	4.4 Test4: FPGA
	4.5 Discussion

	5 Conclusion

